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ABSTRACT

Software developers work concurrently on different kinds of
development artifacts such as requirements, architecture,
design, or source code. To keep these development arti-
facts consistent, developers have a wide range of consistency
checking approaches available. However, most existing con-
sistency checkers work best in context of single tools and
they are not well suited when development artifacts are dis-
tributed among different tools and are being modified con-
currently by many developers.

This paper presents a novel, cloud-based approach to con-
sistency checking in a multi-developer/-tool engineering en-
vironment. It allows instant consistency checking even if
developers and their tools are distributed and hence do not
have access to all artifacts. It systematically reuses consis-
tency checking knowledge to keep the memory/CPU cost of
consistency checking to a small constant overhead per de-
veloper. The feasibility and scalability of our approach is
demonstrated by a prototype implementation and through
an empirical validation with 22 partly industrial system mod-
els.

1. INTRODUCTION

Software engineering is an inherently collaborative disci-
pline with developers working concurrently on a wide range
of development artifacts—requirements, use cases, design,
code, and more. To modify these development artifacts, an
equally diverse engineering tool landscape exists—each tool
usually specializing on specific kinds of development arti-
facts (e.g., Eclipse [1] for source code, IBM Rational Soft-
ware Architect [2] for UML models). Each tool thus only
presents a partial view of a software system [3]. After all,
developers often do not even need access to all engineering
artifacts [4, 5, 6, 7].

The software engineering landscape is characterized by
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the distributed and concurrent modification of development
artifacts by many developers. This follows a familiar pat-
tern: Typically, developers download development artifacts
to their local workstations (i.e., checkout) and modify them
there in private before finally uploading the changes to a
shared repository for others to see (i.e., commit). In doing
so, developers create a local environment where they modify
development artifacts separately from the shared repository
and where they only have access to a subset of all devel-
opment artifacts—those that can be modified by the tools
they use. For example, the designer will use a modeling
tool to modify the models while the programmer will use a
programming tool to modify the source code.

Inconsistencies arise if development artifacts contradict.
It is easy to see that inconsistencies are particularly hard to
spot in situations where different developers modify develop-
ment artifacts privately within different tools. Here existing
work for consistency checking is lacking and efficient means
to manage consistency is needed [7]. While many consis-
tency checking approaches exist today (e.g., [3, 6, 8, 9, 10,
11, 12, 13, 14]) they do not focus on the multi-developer/-
tool problem. These approaches either require complete local
access to all development artifacts or they do not differenti-
ate between private and public knowledge during consistency
checking, which is contradictory to the situation of develop-
ers working in private.

For example, it is hard for a designer working on a
checked-out design model to understand the consistency im-
plications of private changes with regard to source code that
is not locally available. We refer to the checked out devel-
opment artifacts as private working copies and there are
as many such copies as there are developers/tools work-
ing concurrently—each having a partial view only and each
reflecting changes that developers made in private. Thus,
today it is not possible that the designer receive feedback
about inconsistencies between model and source code, if the
latter is not available locally.

In this paper, we introduce a novel approach for consis-
tency checking in a multi-developer, multi-tool engineering
environment. Our approach relies on a cloud infrastructure
to maintain i) a central, public area that contains the en-
tirety of development artifacts shared by all developers and
ii) as many private working areas as there are developers
to reflect their individual, not yet published modifications.
Changes that developers perform locally in their tools are
instantly propagated to their respective private working ar-
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eas in the cloud. These changes are then instantly checkable
against the public area, therefore enabling a complete con-
sistency checking.

The performance savings of our approach are the result of
systematic reuse of consistency checking knowledge. Our ap-
proach does not have any expensive initialization costs and
its benefit increases with the number of developers working
concurrently. To validate our approach we analyzed its com-
putational and memory complexity. Furthermore, to show
its feasibility, we developed a prototype and conducted an
empirical evaluation to assess the scalability of our approach.
Finally, we discuss three partly industrial case studies in
which we applied our infrastructure.

2. PROBLEM ILLUSTRATION
BACKGROUND

This work builds on the Model/Analyzer [15, 10] which is
a single tool/single developer consistency checker. Like most
other consistency checking technologies [3, 11, 16, 17] it can-
not provide a holistic consistency check across all develop-
ment artifacts when a developer only has one development
artifact available (e.g., source code or model) To illustrate
this, we discuss a model of a video on demand (VOD) sys-
tem [?] that is concurrently modified by two developers:
Alice and Bob. Note that when referring to elements of
the example we will use the syntax [UML::<type>]<name>,
where <type> is a placeholder for the specific UML type and
<name> for its name.

2.1 Initial State

Figure 1 shows the complete, public model of the VOD
system that both Bob and Alice are able to see. The UML
model consists of three diagrams: a class diagram showing
the entities Display and Streamer, a sequence diagram out-
lining the interaction among those two classes, and a state
chart depicting the state space of Streamer. We limit our il-
lustration to UML for simplicity. However, the public model
could also include requirements, use cases, source code, and
other development artifacts.

To express desired conditions that a model must satisfy
consistency rules are used. Below we show three exam-
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ples of consistency rules, written in OCL [18], that apply
to UML models: CR1, CR2, and CR3 in Listings 1, 2, and 3.

UML: : Message m
m.receiveEvent.covered—>forAll(Lifeline 1 |
l.represents.type.ownedOperation—>exists (
Operation o |
o.name = m.name) )

Listing 1: (CR1) Message must be defined as an operation
in the receiver’s class.

UML:: Transition t
let classifier:BehavioredClassifier=
self.owner.oclAsType(Region).stateMachine.
context in
classifier.ocllsTypeOf(Class) implies
classifier .oclAsType(Class).ownedOperation
—>exists (o: Operation|o.name=self .name)

Listing 2: (CR2) Action of statechart must be an operation
in the owner’s class.

UML:: Class c

— all parents of UML Class c

let allParents Set (UML:: Classifier) in
not allParents—>includes(c)

Listing 3: (CR3) No circular inheritance.

Each consistency rule is written for a specific context and
the rule must be evaluated for each instance of this context.
Since we focus on UML in this illustration, the context is a
specific UML element. CR3 with the context UML: :Class
checks whether a given UML::Class is part of a circular
inheritance. For CR3 in the class diagram in Fig. 1 we
find two UML: :Class instances ([UML::Class]Display and
[UML: :Class]Streamer) and thus two evaluations of CR3
are necessary—one for each class. We will refer to such
an evaluation as consistency rule instance (CRI) through-
out the rest of the paper. Similarly, CR1 and CR2 check
whether messages in sequence diagrams and transitions in
statecharts have names that correspond to operations in the
class diagrams (i.e., a message action must have an equally
named operation in a class).

Figure 1 depicts the entire UML model, and thus any con-
sistency checker applicable to UML models would be able to
determine its consistency with regard to the three consis-
tency rules. For example, the Model/Analyzer would first
identify the CRIs needed by searching for all UML model in-
stances of the context elements and instantiating a CRI for
every instance found. For the VOD example, seven CRIs
are needed:

e three instantiations of CR1 corresponding to
the three messages in the sequence diagram:
CRI.1.1 for [UML::Messagelstream, CRI.1.2
for [UML: :Messageldraw and CRI.1.3  for
[UML: :Messagelwait;

e two instantiations of CR2 corresponding to the two
transitions in the statechart diagram: CRI.2.1 for the
transition [UML::Transition]wait and CRI.2.2 for
[UML: :Transition] stream; and

e two instantiations of CR3 corresponding to
the two classes in the class diagram: CRI.3.1
for ~ [UML::Class]Display and CRI.3.2 for
[UML: :Class] Streamer.




Except for CRI.2.1 and CRI.1.3, all instances are consis-
tent. CRI.2.1 is inconsistent because there exists no oper-
ation in the class diagram for [UML::Transition]wait in
the statechart diagram. Similarly, CRI.1.3 is inconsistent
because there exists no operation for the “wait” message in
the sequence diagrams.

2.2 Multi-Developer Consistency Checking

Consider now that Alice and Bob modify the UML model
separately. Each developer checks out the model to his or
her local workstation that runs a modeling tool and a con-
sistency checker. Normally, the public model would not only
have a UML model but also other kinds of development ar-
tifacts such as requirements, use cases. In analogy, let us
assume that there are two modeling tools involved and Al-
ice uses a modeling tool that can only modify class and state
chart diagrams whereas Bob uses a modeling tool that can
modify all three kinds of diagrams. Thus, Alice—and her
consistency checker—only has partial knowledge available.
Note that in the following, we append the starting letter of
the developer’s name to the consistency rule instances to dis-
tinguish them (e.g., CRI.1.3.B is Bob’s private consistency
rule instance of CRI.1.3).

2.2.1 Adaptations by Bob

Bob modifies his private working copy of the UML model
by adding a feature: in order to stream movies a user must
first connect to the [UML: :Class]Streamer. Bob thus makes
the following changes consecutively:

e an operation called “connect” is added to the
[UML: :Class]Streamer in the class diagram,

e a start state and transition is added in the state chart
diagram, and

e a connect message is added to the sequence diagram.

Furthermore, Bob decides to resolve the two in-
consistencies CRI.1.3 and CRI.2.1 by renaming the
[UML: :Operation]pause in the class diagram to “wait”. The
new state of Bob’s working copy is depicted in Fig. 2. These
changes alter the state of the UML model and thus have
implications on the CRIs. Incremental consistency checkers,
such as the Model/Analyzer, are able to react to changes
in a fine-grained manner without re-evaluating the entirety
of the model. The Model/Analyzer defines the concept of
a scope which is a set of elements that, if changed, should
trigger the re-evaluation of CRIs. This set is created at the
first evaluation of the CRI and is simply the list of model
elements accessed during the evaluation of the CRI on the
UML model. Only changes to these accessed elements can
cause the CRI state to change. A CRI is thus re-evaluated
if an element in its scope changes—details are discussed by
Egyed [?]. Please note that most incremental consistency
checker have similar concepts (e.g., critical node [19] impact
matriz [16]).

The first change triggers a re-evaluation of CRI.1.1.B
and CRI.1.3.B because a new operation was added to the
class [UML: :Class] Streamer, which may affect their results.
However, the re-evaluation did not cause the CRIs to change
their state (i.e., change from consistent to inconsistent or
vice versa). The CRIs CRI.2.1.B and CRI.2.2.B need to
be re-evaluated as well. Furthermore, the second and third
change each require a new CRI, CRI.2.3.B and CRI.1.4.B
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respectively because they introduce new UML model ele-
ments whose types match the context of a consistency rule
(CR2 and CR1, respectively). This consistency check is indeed
necessary. Finally, the renaming of [UML: :Operation]pause
to “wait” in the class diagram affects nearly all instances
of the interaction diagram (except 1.2.B) and all instances
of the state chart, amounting to 6 CRI evaluations in to-
tal. This is because the changed name could affect any de-
fined transition in the state chart or any operation called on
[UML: :Lifeline] Streamer in the interaction diagram. In-
deed, this change does resolve the inconsistency CRI.1.3.B.
In fact, all inconsistencies are resolved at this point and a
new feature (connect) is added.

2.2.2 Adaptations by Alice

Alice also wants to resolve the inconsistency between
the class diagram and the state chart. Unaware of Bob’s
work she does so in a different way: by renaming the
[UML: : Transition]wait to “pause”. The state of her work-
ing copy is depicted in Fig. 3. This change resolves the
inconsistency and requires the re-evaluation of CRI.2.1.A.
However, recall that Alice’s tool does not have available
the entire UML model. This demonstrates a situation
where a tool and its corresponding consistency checker
does not have access to all development artifacts—which
is the norm [4, 7]. Her local consistency checker finds that
she indeed removed the inconsistency with the state chart.
However, her local consistency checker cannot know about
the inconsistency with the interaction diagram, which re-
mains (i.e., there is still no [UML: :Operation]wait for the
[UML: :Class] Streamer).

3. PROBLEM STATEMENT

The Model/Analyzer, like other existing consistency
checking approaches, suffers from incomplete knowledge in
private working copies. The following issues exist:

e Incomplete information. Approaches such as the
Model/Analyzer [15, ?] or CLIME [3] are capable of



checking private working copies efficiently and incre-
mentally. However, they require all development ar-
tifacts to be available locally, which is not often the
case in multi-developer, multi-tool development sce-
narios and should also not be the case just for the
sake of complete consistency checking and separation
of concerns.

e No support for private working copies. Ap-
proaches that allow for incomplete local knowledge
(e.g., [20, 6, 8, 9, 21]) do not support the idea of pri-
vate adaptations (i.e., every change a developer per-
forms is immediately considered public). This limits
the applicability of those approaches because not ev-
ery developer would like changes to be publicly visible
immediately (i.e., trial and error).

4. GOAL

To address the problems described in Section 3, our goal is
to develop an infrastructure that is capable of checking the
impact of changes performed by many concurrently working
developers in private (i.e., many private work areas) with re-
spect to publicly available knowledge (i.e., one shared, public
area). The infrastructure’s computational effort and mem-
ory consumption should be scalable and it should not repli-
cate all development artifacts to all private working areas.

S. APPROACH

Our approach to scalable consistency checking in a multi-
developer, multi-tool environment combines the advantages
of version control systems, private working areas, and in-
cremental consistency checkers. Our solution systematically
reuses computed consistency checking knowledge, and pro-
vides complete consistency checking for all developers at all
times.

5.1 Overview

Figure 4 depicts an overview of our approach. The cloud-
based infrastructure is depicted on the right-hand side of
Fig. 4. The infrastructure maintains a version history
of all public development artifacts and their correspond-
ing consistency data (public area). The CRIs are thus
persisted alongside the development artifacts, which is a
key factor of our approach. The version history is fine-
granular, similar to the version control of Resource Descrip-
tion Framework(RDF') [22] or operation-based version con-
trol of EMF [23]. To represent arbitrary development arti-
facts, we use a unified representation, which we will refer to
simply as the model. In this unified representation individ-
ual elements of development artifacts and their properties
are subject to version control [24].
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The left-hand side of Fig. 4 depicts development tools used
by developers (rectangles labeled as Tool).1 The cloud main-
tains private work areas (pwa) (PWA1 to PWAj) to capture the
differences between the development artifacts in the tools
and the shared, public development artifacts in the cloud.
It is important to note that we do not expect development
tools to run within the cloud as developers typically use
them on their local workstations. However, PWAs do reside
in the cloud together with the public area. There are as
many PWAs as there are development tools used by devel-
opers. Each PWA reflects what its developer has changed
in its respective tool as compared to the public area. This is
achieved by the means of tool-adapters, depicted as grey
colored polygons that integrate the various tools with the
cloud-based infrastructure?. Tool-adapters support a typ-
ical SVN [28]-style workflow (i.e., check-out, update, com-
mit) and, most importantly, they communicate development
artifact changes made by developers in tools to their respec-
tive PWAs in the cloud to ensure that the PWAs are always
up-to-date.

A tool is typically only concerned with the development
artifacts that it can edit (e.g., a modeling tool may not edit
source code). Yet, to perform a complete consistency check,
a consistency checker needs access to all development arti-
facts. While PWAs reflect the ongoing works of their cor-
responding developers/tools. Placing a PWA in the cloud
provides it with access to all public, version controlled de-
velopment artifacts. Therefore, by extension a consistency
checker operating on the PWAs in the cloud has access to
all development artifacts—private and public. This satis-
fies the basic requirement for complete consistency checking.
However, this alone does not guarantee scalability. Simply
executing the Model/Analyzer—or any other consistency
checker—in PWAs in the cloud would lead to unnecessary
CRI evaluations and unnecessary memory consumption be-
cause each PWA might replicate same/similar consistency
information. Consider the problem illustration again where
after obtaining the model, both private working areas of Al-
ice and Bob have available local copies of their CRIs to re-
flect their private state of consistency. For example, neither

1As proof of concept, we already support a wide range
of such tools such as Eclipse for source code [1], IBM
RSA [2], Microsoft Excel and Visio, Eplan [25], Creo Ele-
ments Pro [26], generated ECore Editors.

2Fo[r rﬁlore information on tool-adapters refer to Demuth et
al. [27].
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Bob’s nor Alice’s changes affected the third consistency rule
(circular inheritance). Thus, CRI.3.1.A/B and CRI.3.2.A/B
were initially needlessly evaluated by both Alice’s and Bob’s
consistency checker.

To address this issue, each PWA not only maintains
the A of the model with respect to the base version (i.e.,
pwa.Amodel) but also its corresponding consistency A (i.e.,
the added/modified/removed CRIs stored in pwa.ACRI).
Whenever a developer modifies a development artifact, the
consistency checker re-evaluates the affected CRIs. When
CRIs change then they are stored as CRI deltas in the PWA
which constitutes the difference between the tool’s consis-
tency state and public version’s consistency state. The ver-
sion controlling of consistency data also avoids expensive,
initial batch consistency checking as the CRI can be checked-
out together with the artifacts.

5.2 Unified Representation

Before we discuss the intrinsics of our approach, we need
to discuss how development artifacts are stored in the cloud
and how this allows us to integrate development tools with
our infrastructure. As previously mentioned, development
artifacts (e.g., models, source code) are translated to a uni-
fied representation, called model. A simplified metamodel
for this uniform representation is depicted in Fig. 5.

A model element has a unique id. Furthermore, the
boolean flag alive indicates whether the model element is
alive or not (i.e., whether it has been deleted or not). More-
over, model elements may have a variable number of prop-
erties, which are key-value pairs. Values of properties are
either of basic data types such as Boolean, Integer, Float,
and String or references to other model elements (notice
that the inheritance of DataType extends to ModelElement).
Any tool that stores its development artifact in a graph-
like structure of nodes and edges can be mapped to such a
simple, unified representation (e.g.,ECore [29], ASTs). The
semantics do not change.

5.3 Check-Out

To follow the illustrative example, Alice at first
needs to obtain (i.e., check-out) the class and state-
chart diagrams.  Alice thus uses the check-out func-
tion in her modeling tool—provided by the tool-adapter—
where she specifies the model and version she wants to
check out. Listing 4 describes the check-out algorithm.

The algorithm first creates a PWA for her tool, which ref-
erences a version of the public area as base version. The
PWA’s A of the model is empty upon check-out because Al-
ice has not have made any changes yet (pwa.Amodel. Like-
wise, pwa.ACRI is also empty. The algorithm returns a tuple
of the PWA and the checked-out model elements to the tool
adapter. The tool adapter then translates the model ele-
ments to her tool’s internal language—which is tool-specific
and therefore not depicted.

5.4 Changes

After checking out a model, developers may modify it
within their development tool. Changes made by a devel-
oper are observed by the tool adapter and propagated to the
developer/tool’s corresponding PWA as a change of model
elements. There the changes are stored as deltas with re-
gard to the base version. Less straightforward is comput-
ing the consistency implications of these changes. Affected
CRIs have to be re-evaluated and the new state needs also
be stored in the PWA. However, this process varies with re-
gard to the kind of changes: modification, addition, and
deletion.

5.4.1 Modification

Recall that Alice renames the transition from “wait” to
“pause”. She does this in her tool and the tool adapter
will update Alice’s pwa.Amodel with the modified name.
Listing 5 describes the algorithm to handle modifications
of model element properties in the PWA. The changed
model element property is added in line 2 as a model delta.
The syntax of this line is to be understood as follows:
pwa.Amodel holds the A for all model elements. The A for
an individual model element with identifier ¢ can be accessed
through pwa.Amodel[i]. Recall, that each model element
is identified by a unique id, which is utilized for this access.
Further, the A of individual properties of model elements
can be accessed by pwa.Amodel[i]. [p], p again being the
identifier for the property In this case, the name of a prop-
erty is the unique identifier for the access of property As.

modify (pwa, modelElement, property, oldValue,
newValue)

pwa.Amodel [modelElement |.[ property]| = newValue
CRIs = {CRI € pa[baseVersion].CRI |
CRI. alive == true and CRI ¢ pwa.ACRI}

CRIs U= pwa.ACRI
for CRI € CRIs
if (modelElement, property) € CRI.scope
pwa. ACRI[CRI] = evaluate (CRI)

checkOut (baseVersion , model)
pwa = create PrivateWorkingArea(baseVersion)
return pwa, getModelElements(model, baseVersion)

Listing 4: CheckOut

Listing 5: Modification of a Model Element

An example of such an access could be
pwa.A[[UML: :Transition]wait] . [name]. This model
element /property does not exist in the PWA before the
modification and is set to the value “pause”—thus overwrit-
ing the value “wait” from the same model element/property
found in the public model. Each model element/property
may have at most one entry in pwa.Amodel. Should Alice
later overwrite this name again, then the newer name would
overwrite the previous change in the PWA.

For each modification, all CRIs affected by the modifica-
tion must be re-evaluated and the result must be persisted
in pwa.ACRI. Similar to model elements for tool-adapters,
a consistency checker has an internal language for CRIs.
Thus, CRIs are similarly translated into the unified represen-




tation and also uniquely identified and accessible as model
elements. Since these CRIs are as well subject to version
control, we must distinguish two cases: CRIs that already
are in pwa.ACRI and CRIs that are in the public area. The
variable CRIs is the union of the private CRIs (line 5) and
the public CRIs (lines 3-4). Please note that in line 3 a new
syntax is introduced to access the public area (pa). There-
fore, palversion] accesses a specific version of the public
area. Computing the private CRIs is straightforward be-
cause it is pwa.ACRI itself. Computing the public CRIs is
more complex for two reasons: we must not include any
public CRIs that 1) have been deleted (i.e., certain changes
require CRIs to be deleted in pwa.ACRI) and 2) have newer
counterparts in the PWA (i.e., changes may require CRIs
to be re-evaluate the new result of an evaluation must then
overwrite their public counterparts).

Once collected, we need to re-evaluate those CRIs whose
scopes contain the changed model element property (lines
6-8). The new evaluation result is then stored in pwa.ACRI
(line 8)—which either overwrites a previous private result or,
if there was none, creating a new entry and therefore effec-
tively overwriting the public result. This explains the need
to filter the overwritten public CRIs as discussed above. In
case of Alice’s change, pwa.ACRI was initially empty. Of the
seven CRIs that existed in the public area during check-out
(Fig. 1), only CRI.2.1 had a scope that included the tu-
ple ([UML: :Transition]wait, name). Therefore, CRI.2.1
needs to be re-evaluated, resulting in the private CRI.2.1.A
stored in her PWA. This private CRI exists for Alice only
and overwrites the public CRI.2.1. The public CRI.2.1 can-
not be replaced physically because it corresponds to the pub-
lic model element. For example, Bob’s PWA still needs to
see the public CRI.2.1 as he does not see Alice’s changes at
this point and has not made his changes either. The eval-
uation mechanism evaluate(CRI) is not discussed at this
point for brevity—please refer to Reder and Egyed [15].

5.4.2 Addition

In case of an addition, the new model element and all
its properties need to be inserted in pwa.Amodel (line 2
in Listing 6). The addition of a model element cannot
cause a re-evaluation because a new model element can-
not yet be part of the scope of any CRI (the addition of-
ten coincides with a modification in which case the mod-
ify algorithm takes care of the latter). However, if a
consistency rule exists whose context matches the type of
the model element then a CRI must be created and evalu-
ated (lines 5-8). For example, recall that Bob adds a new
[UML: :Message] connect in his sequence diagram (Fig 2).

5.4.3 Deletion

The deletion of a model element (Listing 7) requires the re-
moval of all CRIs whose context elements match the deleted
element, as opposed to additions that cause the creation of
CRIs. Similar to addition, deletion often coincides with a
modification in which case the modify algorithm takes care
of the latter. A CRI residing in the private work area can
be deleted simply by removing it from pwa.ACRI. However,
CRIs residing in the public area cannot be deleted because
they should continue to exist in the public base version.
These CRIs must be flagged as “not alive” in further versions.
This is done by adding/modifying a CRI to pwa.ACRI with
the alive flag being false. Model elements are handled like-
wise. For example, should Bob delete [UML: :Messagelwait
then the model element and its CRI must be flagged
deleted and added to the pwa.Amodel and pwa.ACRI.

deletion (pwa, modelElement)
CRIs = ... //as defined in change(..)
for CRI € CRIs
if modelElement € CRI.scope then
if CRI ¢ pa[baseVersion].CRI then
remove CRI from pwa.A.CRI
else
CRI. alive = false
if modelElement ¢ pa[baseVersion].model then
for property of modelElement
remove pwa.Amodel[ modelElement].[ property |
else
pwa.Amodel [modelElement ]. alive = false

Listing 7: Deletion of a Model Element

5.5 CRI Evaluations and Property Access

During the evaluation of a CRI the consistency checker
accesses model element properties (e.g., the name of
[UML: :Class]Display). Since a PWA possibly overwrites
any public version of a property, these accesses need
to be handled differently from traditional approaches.
For example, when the consistency checker re-evaluates
CRI.2.1.A then the transition’s name should be “pause”,
not “wait”.  Algorithm getProperty (Listing 8) shows
that we first need to look for a model element prop-
erty in pwa.Amodel and return its value, if found.

getProperty (pwa, modelElement, property)
if —modelElement. alive then
throw Exception
if (modelElement, property) € pwa.Amodel then

return pwa.Amodel [modelElement].[ property]
else
return pa[baseVersion].model [ modelElement]. |
property ]

add (pwa, modelElement)
for property of modelElement
pwa.Amodel [modelElement | .[ property] =
modelElement . [ property ]
for CR € CRs

if cr.context = modelElement.type then
CRI = create instance
pwa.ACRI[CRI] = evaluate (CRI)

Listing 6: Addition of a Model Element

After Bob’s tool adapter sends this newly added model
element, the add algorithm adds the new message to
pwa.Amodel and adds a newly instantiated CRI.1.4.B to
pwa.ACRI—recall that a CRI is instantiated for every in-
stance of a matching context element.

Listing 8: Property Accesses

However, if the model element is marked as “dead” an excep-
tion will be thrown. Otherwise, we return the value of the
property of the public model’s base version. Therefore, the
consistency checker has access to all model elements and
properties (public and private) but the private ones have
precedence over the public ones. Each PWA thus reflects its
own view of the complete model.

5.6 Commit

Once Alice and Bob are done with their changes, they will
want to commit them. Committing (Listing 9) requires de-
termining possible version conflicts. Algorithm conflicts




in Listing 10 defines how to obtain conflicts. A model ele-
ment conflict (conflictME) exists for those model elements
in pwa.A.model for which a newer version (higher than
the base version) exists. To determine the existing con-
flicts, the deltas of a range of versions need to be accessed
(pallowerVersion, higherVersion]). The same holds for
CRI conflicts (conflictCRI) if a new version of a CRI exists
upon commit. If conflicts are detected then the commit is
aborted and developers are expected to resolve them anal-
ogous to SVN and other repositories. Once no conflicts are
detected then the PWA changes are moved to the public area
and given a new version number—a cheap operation since
they already reside in the cloud. Finally, pwa.Amodel and
pwa.ACRI are emptied because after a commit there is again
no difference between the tool artifacts and the public area.

commit (pwa)

conflictsME , conflictsCRI = conflicts (pwa,
version)
if conflictsME # @ V conflictsCRI # 0 then
return

pa[HeadRevision () +1].model = pwa.A.model
pa[HeadRevision () +1].CRI = pwa.A.CRI
pwa.A.model = 0
pwa.A.CRI = 0

Listing 9: Commit

conflicts (pwa, version)

conflictsME = {modelElement € pwa.A.model |

modelElement € pa[pwa.baseVersion, version].

model
v3 prop € modelElement .| property]
prop € pa[pwa.baseVersion, version].model }

conflictsCRI = {CRI € pwa.A.CRI |

CRI € pa[pwa.baseVersion, version].CRI}
return (conflictsME , conflictsCRI)

Listing 10: Conflicts

5.7 Update

Developers may update the model they are currently mod-
ifying, if a newer version or conflicts exists. Before updat-
ing, version conflicts (if any) must be determined and re-
solved manually. Updating a private working area (List-
ing 11) consists of the following steps: i) determine the
differences between the PWA’s base version and the de-
sired version, ii) determining the currently existing version
conflicts, iii) updating the base version to the new higher
version, and finally returning the conflicts and the differ-
ences to the tool. Finally, the differences between base ver-
sion, new desired version result, and already existing deltas
in the PWA may require additional consistency checks.

update (pwa, version)

diff = pa[pwa.baseVersion, version].model
conflictsME , conflictsCRI = conflicts (pwa,
version)
pwa.baseVersion = version
CRIs = {CRI € pa[baseVersion].CRI |
CRI. alive == true and CRI ¢ pwa.ACRI}

CRIs U= pwa.ACRI
for (modelElement, property) € diff
for CRI € CRIs
if (modelElement, property) € CRI.scope
pwa.ACRI[CRI] = evaluate (CRI)
return conflictsME , conflictsCRI, diff

Listing 11: Update

6. VALIDATION

In Section 5 we discussed how our approach integrates
PWAs with a public area in a cloud-based environment to
enable comprehensive, complete consistency checking in a
multi-developer environment. To validate our approach, we
i) demonstrate its feasibility by developing a prototype im-
plementation, ii) analyzed the computational complexity of
our approach, iii) performed an empirical evaluation to as-
sess the actual overhead imposed by our approach compared
to the Model/Analyzer applied to UML on a single tool, iv)
analyzed the memory consumption of storing the CRIs, v)
discuss the advantages of our approach in terms of memory
consumption for each PWA, and vi) conducted three case
studies to demonstrate the applicability of our approach.

6.1 Prototype Implementation

This section provides a short overview of the implementa-
tion details of the version control system and the incremental
consistency checker.

Version Control System - DesignSpace The version
control proof of concept implementation, called DesignSpace
(DS) [13, 27], is a cloud-based infrastructure that allows to
version control arbitrary development artifacts on a fine-
granular basis.

Incremental Consistency Checker - Model/-
Analyzer As consistency checker the Model/Analyzer
(M/A) [30] was adapted and employed. Previously exist-
ing implementations already worked with UML, EMF Core
(ECore) [29], and also RDF. For this work, it was adapted
to work with the representation used by the VCS and its
change notifications.

6.2 Computational Complexity

The computational complexity of consistency checking is
mostly a factor of the number of necessary CRI evalua-
tions. The changes that cause the re-evaluation of CRIs
are add and modify—the deletion of model elements does
not cause re-evaluations. Previous validations of the Mod-
el/Analyzer [?] suggested that the average number of eval-
uations of CRIs per change is between 3 and 11 (depend-
ing on the model size). Following, we denote this value as
constant c¢. We define the set of performed changes (which
trigger re-evaluations; i.e., add, modify) by an individual de-
veloper as change.am. Equation 1 defines the total number
of CRI evaluations CRI.Eqpproach as the sum of evaluations
required for each individual developer.

|developer|

CRI.Eapproach = Y _

=1

(¢ * |change.am;)|) (1)

This equation shows that the computational complex-
ity grows linearly with the average number of performed
changes per developer and the total number of developers.
Thus our approach scales.

To empirically assess the overhead imposed by our ap-
proach, we re-enacted a previous evaluation of the Model/-
Analyzer using our cloud (i.e., we used the same models
and performed random changes as described by Reder and
Egyed [15]). For this, we simulated changes for all model
elements in each of the used models. Specifically, we cap-
tured the time required for re-evaluating all affected CRIs
and to persist the new result. Each change was performed
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Table 1: Regression Results for Total Processing Time

Total Processing Time (ms)

0.0004581
(0.0000068)

Model Elements

Affected Instances (AI) -0.0017938
(0.0074605)
Evaluation Time per Instance (ET) -0.0001086

(0.0003659)

AT*ET 1.0003651***
(0.0002575)

Observations 48708

R2 0.9996

Standard errors in parentheses
* p<0.05 " p<0.01, " p <0.001

several times and the raw data for each change was recorded.
The experiment was performed on a Windows 7 Professional
PC with an Intel(R) Core(TM) i7-3770 CPU @ 3,4GHz and
16GB of RAM. Figure 6 depicts the evaluation times per
affected CRI on average depending on the project size. We
furthermore performed an OLS regression analysis on the
total processing time (i.e., the time it takes to find affected
CRIs and to re-evaluate them). The obtained results are
summarized in Table 1, which shows that the model size
has a significant, yet quite small effect on the evaluation
time. Increasing the model size by 1,000 elements leads to a
total processing time increase of 0.4ms on average. The re-
sults furthermore indicate that the number of affected CRIs
and evaluation times per CRI individually do not affect the
total processing time. However, in combination those fac-
tors are significant determinants of the total processing time.
On average, an increase of the number of affected instances
by one increases the total processing time by 23ms. An in-
crease of the evaluation time per affected instance by 1ms in-
creases the total processing time by 1.5ms on average. Note
that more than 99.9% of sample variations are explained by
the analyzed factors. Comparing to previous evaluations of
the Model/Analyzer [15], we obtained similar result and our
framework did not slow down the evaluation times.

6.3 Memory Consumption

The memory consumption of our approach correlates with

the number of CRIs that need to be maintained overall and
for each developer individually. Equation 2 defines the total
number of CRIs that have to be persisted in our approach
(CRIapproach). The first factor describes the set of CRIs
needed for the public area, which is the number of CRIs for
a given model (CRI(model)). Furthermore, since a PWA
stores the A with respect to the base version, we must con-
sider the effect of modifications, additions, and deletions.
Each of these operations adds a new entry to pwa.ACRI. Re-
call the average number of CRIs affected by a single change
¢, each performed change adds ¢ CRI entries. Note that the
number of CRIs needed for an entire model grows linearly
with the model size (factor CRI(model)). The CRIs’ mem-
ory consumption in the public area is thus linear with the
model size. Furthermore the CRI’s memory consumption
in the PWAs is again linearly dependent on the number of
changes per developer and the total number of developers.

|developer|

CRlIapproacn = CRI(model) +

=1

(¢ * |[change;|) (2)

This equation again shows the scalability of our approach.

6.4 Version control mechanism

In this section, we discuss the advantages of our approach
in terms of memory consumption for each individual PWA.
As previously stated, a PWA stores the Amodel and fur-
thermore ACRI. We provide a behavioral analysis of how a
PWA’s memory footprint depends on model changes com-
pared to using the Model/Analyzer as a plugin.

In this discussion we use the function M (z) to denote
the memory consumption of a specific element x. In our
approach, for both Amodel and ACRI there exists an up-
per bound in terms of memory consumption: i) M (model),
the memory it takes to store the complete model after the
adaptations are finished by a developer (Equation 3), and ii)
M(CRI), the memory the consistency checker needs to store
the corresponding complete consistency information (Equa-
tion 4).

M (Amodel) < M (model) (3)
M (ACRI) < M(CRI) (4)

Note that the plugin Model/Analyzer’s footprint always
equals Mgy as defined in Equation 5. Mgy the memory
consumption of a complete consistency check where all de-
velopment artifacts are locally available.

Msy = M(model) + M(CRI) (5)

Intuitively, in the worst case (i.e., if the complete model was
changed) our approach equals the plugin Model/Analyzer
as in this case our approach stores the whole model again
in its entirety in the PWA and re-evaluates all CRIs. Sub-
sequently, as long as this is not the case our approach only
stores a fraction of the whole model. Thus, our approach
provides the advantage of (M (model) — M(Amoder)) +
(M(CRI) — M(Acrr)). Therefore, the amount of saved
memory depends on the size of Amodel and ACRI.
Equation 6 — Equation 7 state our assumptions about
both Amodel and ACRI. The size of Amodel is expressible
through a function of the model size (Equation 6) (e.g., a
developer may always change a fixed number of elements
per commit). Furthermore, the size of ACRI is completely
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determined by the function CRI (Equation 7), which takes
as argument Amodel.

|Amodel| = DeltaM odel(|model|) (6)
|ACRI| = CRI(Amodel) (7)

Memory consumption of PWAs is mostly influenced by
Amodel. In Fig. 7 a behavioral analysis for possible cases of
DeltaModel is presented, as described below.

6.4.1 Memory Consumption per distinct Model Ele-
ments changed

First, we discuss memory consumption per distinct
changed model elements, which is plotted on the pos-
itive y-axis in Fig. 7. Values on the positive y-axis
are normalized as follows, (M (Amodet) + M(Acrr))/Msu

(1 actual memory consumption )
‘77 possible memory consumption/* . L.
The x-axis shows that the ratio of distinct model ele-

ment changes to the model size (1 implies the entire model
changed).

Two possible assumptions for distinct elements changed
are: 1) memory consumption may rise linearly with the per-
centage of changed elements (linear function f(A)) or more
pessimistically 2) memory consumption may rise faster in
the beginning than towards the end h(A). The function
h represents a pessimistic case for our framework, as few
changes would already lead to high memory consumption.
Consider now z; and its corresponding memory consump-
tion of A(x1). If a developer changes more of the model (e.g.,
22) then the memory consumption rises to h(x2). Hence
memory is saved with regard to Mgy (even under a pes-
simistic assumptions).

6.4.2 Memory Consumption depending on Model
Size

The negative y-axis indicates model sizes in total. One
can assume different functions of how much of a model is
changed by a developer. Consider now, that before each
commit regardless of model size a roughly constant number
of elements is changed (function =), resulting in the mem-
ory consumption of h(m). As models increase in size then
the memory consumption relatively decreases. For example,
if the model size increases from m’ to m then memory con-
sumption changes from h(m’) to h(m). If we assume that the
commit sizes increase with larger models then our approach
is still beneficial. For example, assume that each commit
changes about fifty percent of the model. In this case re-
gardless of model size the memory savings of our approach
is—based on the assumed memory consumption—constant

(e.g., 1-h(.5)).
6.5 Case Studies

Our infrastructure was employed in three user studies,
which we briefly discuss next. One of these case studies
was performed with the Austrian Center of Competence in
Mechatronics (ACCM), another with the Flanders’ Mecha-
tronics Technology Center (FMTC), and a third study in-
volved students of the Johannes Kepler University.

6.5.1 ACCM Robot Arm

This case study involved the design, mechanical calcula-
tion and partial implementation of a robot arm. The ACCM
group provided the mechanical calculation of the robot arm
in several Excel sheets and CAD drawings. UML models of
the robot arm were drawn in IBM RSA, Eclipse provided the
source code. The mechatronic design followed a trial-and-
error cycle where most changes were instantly propagated in
a synchronous collaboration style. The scope of the project
exceeds the discussion in this paper. However, we provided
instant consistency checking and the ability to define and
check cross-tool traceability links.

6.5.2 FMTC

This FMTC case study involved EPLAN Electric P8 [25]
drawings that had to be kept consistent with source code.
The drawings and code were provided by a third-party com-
pany. The goal was to enable instant consistency checking
across tool boundaries in an efficient manner.

6.5.3 Student Experiment

Finally, our approach was applied in a student survey, con-
ducted as part of a research project by a K2-Center of the
COMET/K2 program. The goal was to study the benefits
of different representations for expressing dependencies in
mechatronical designs. In particular, whether graph visual-
ization are inferior to matrix representations. Participants
of the experiment were 32 students who had to perform a
design refactoring based on a requirement from a customer.
The nature of the case study required that all development
artifacts resided in the same private work area, which en-
abled a quick trial-and-error cycle given the provided con-
sistency information.

6.6 Threats to Validity

In terms of computational complexity, we demonstrated
that for each developer only a small set of CRIs needs to



be stored/evaluated—i.e., the CRIs that are affected by
changes made by the developer. Furthermore, the model
of the version control mechanism showed that it is opti-
mal in terms of memory consumption. The equations and
models defined in the validation are based on the presented
algorithms and observed behavior of the Model/Analyzer.
Thus their correctness can be inferred from the algorithms
itself. Finally, the empirical validation confirmed that our
approach scales well (based on a diverse and large set of
models authored by different developers). As to the validity
of the empirical validation, we believe that the used models
were representative. They were diverse in size and domain,
and were created by different (groups of) developers and
companies. The case studies showed that our infrastructure
is indeed applicable to real world problems. The paper did
not discuss performance threats the communication over-
head might pose, as this is mostly an implementation detail
Further, incrementally propagating changes from tools to
the PWA leads to more communication than the occasional
batch processing of changes. We ignored this in our models
but believe that this does not pose a threat to validity, as a
variety of cloud-based services already employ this pattern
(e.g., Google Docs).

7. RELATED WORK

Both consistency checking and version control are active
fields of research, following research related to our approach
is discussed.

Global Consistency Checking: These approaches ad-
dress the general problem of consistency checking across pos-
sibly distributed development artifacts of a system. Finkel-
stein et al. [8] introduced consistency checking in multi per-
spective specifications. Each developer owns a perspective
(i-e., a viewpoint [5]) of the system according to his or her
knowledge, responsibilities or commitments. Multiple view-
points can describe the same design fragment, leading to
overlap and the possibility of inconsistencies. The issues in-
volved in inconsistency handling of multi perspective speci-
fications are outlined in Finkelstein et al.[31]. An important
insight for handling consistency is to allow models to be
temporarily inconsistent, rather than enforcing full consis-
tency at all times. Despite this advances, no implementation
is provided. Further, the approach does not difference be-
tween, a public state that is fixed (i.e. the contents of the
repository) and private modifications. Nentwich et al. with
xlinkit [12] present a framework for consistency checking dis-
tributed software engineering documents encoded in XML.
Sabetzadeh et al. [32] presented global consistency checking
by model merging. The approach focuses on handling in-
consistencies between multiple models expressed in a single
language. Although both approaches consider distributed
models, at the time of the consistency check there is no dis-
tinction between private adaptations and public knowledge.
Consistency Checking in General: Numerous ap-
proaches exist for consistency checking, specializing on spe-
cific artifact types or across artifacts [33]. Many of these
approaches can also be used to check consistency across sev-
eral development artifacts. Finally, two approaches need to
be highlighted, as these could have been replacements for
the Model/Analyzer. Blanc et al. [34] look at the sequence
of operations used to produce the model rather than looking
at the model itself. Thus they can not only verify structural
consistency of model but also methodological consistency.

Reiss presented an approach (CLIME) to incremental main-
tenance of software artifact [3]. This approach covers a mul-
titude of development artifacts (presented are source code,
models and test cases). As unified representation informa-
tion is extracted from the development artifact (e.g., symbol
table for source code, the class diagram itself) and stored in
a SQL Database.

Version control: Version control for text-based develop-
ment artifacts permeate software engineering and academia.
Further, extensive research was conducted on version con-
trol of models, a survey is presented by Altmanninger et
al. [35]. Research in the area of version control systems an-
alyze their version controlled development artifacts to find
inconsistencies. An example of such an approach was pre-
sented by Taentzer et al. [36]. The approach considers the
abstract syntax of models as graphs. Revisions are graph
modifications, based on this, they identify two kinds of con-
flicts, operation-based and state-based as a result of merged
graph modifications. State-based conflicts are concerned
with the well-formedness, operation-based conflicts are then
concerned on the parallel dependence of graph transforma-
tions and the extraction of critical pairs. Cicchetti et al. [37]
proposed a meta-model for representing conflicts which can
be used for specifying both syntactic as well as semantic con-
flicts. Finally, two popular version control systems need to
be mentioned GIT [38] and Apache Subversion (SVN) [28].
Both inherently provide capabilities to create a continuous
integration, during which source code checks are executed.
However, the authors are not aware of any tools to extent
this idea to also check consistency across multiple artifacts.
Applying our approach to the continuous integration phase,
would allow that for a commit or push to a feature branch
the consistency checker would verify the impacts of the per-
formed changes with respect to all development artifacts.
Another, distributed, revision control and source code man-
agement system is GIT [38].With GIT, each obtained work-
ing directory is a full-fledged repository—a clone copies the
entire history of the repository to the working directory.
Therefore, a developer has the complete standard workflow
available without being dependent on network access or a
central server. To publish changes a push to a remote server
is necessary. However, since different implementations of
GIT (and extensions to the typical workflow) exists, a push
may at first be pushed to a staging area, where it needs to
be reviewed, before being approved and becoming part of
the main trunk (e.g., Gerrit [39]).

8. CONCLUSION

This paper presented a novel approach to multi-developer
consistency checking. The approach eliminates consistency
checking redundancies in a multi-development environment
to reduce the CPU and memory footprint to a relative con-
stant per developer. We demonstrated that our approach
completely eliminates the model size as a scalability fac-
tor and is fast. For future work, further development tools
will be integrated with our infrastructure (i.e., create tool-
adapters).
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